
ENERGY CHARACTERISTICS OF HARMONIC 

INTERNAL WAVE GENERATORS 

V. A. Gorodysov and E~ V. Teodorovich UDC 532.58 

The propagation of internal waves plays an important role in liquid media with layers 
that vary according to density (stratified liquids) and are located in a gravitational 
field, which include the Earth's atmosphere and oceans. Highly controlled experi- 
ments are essential for investigating efficient generators of internal waves (in 
particular, harmonic internal waves). Hence, it is important to compare the effi- 
ciences of various types of internal wave generators. This problem is considered 
for the simplest forms of stratification: discontinuous and uniform (with a 
constant buoyancy frequency N). Although there are very few studies of oscilla- 
tions in the case of discontinuous stratification, there are even fewer investiga- 
tions of uniform stratification (e.g., see [1-4]). A comparison of the efficiences 
of different types of generators has not been made for the latter case. This is 
done below on the basis of energy estimates for two types of generators: for 
objects (a sphere or cylinder) that undergo small harmonic oscillations in a liquid 
and for objects with pulsating volumes. 

i. A Two-Layer Liquid. We will consider two uniform, incompressible, ideal liquids 
of different densities that extend without limit above and below a dividing surface z = 0. 
The results are based on a direct generalization of the data in [5] for a single liquid with 
a free surface but have been obtained by other methods. 

We will model the oscillating objects with a distribution of massive sources m(r, t) = 
m0(r) sin mot. Then, small irrotational perturbations of the velocity potential in the 
two-layer liquid ~(r, t) satisfy the equations 

v = V ( p ,  p = - -  p~-f, p ,  v - - ~  O. 
T-~ao  

Here t, z are the time and the vertical coordinate; v, p are the velocity and pressure 
perturbations; r = {x, y, z}, r = {x, z} are the three-dimensional and two-dimensional 
problems, respectively (also, r h = {x, y, 0} and r h = {x, 0}); [f] - flz=+0 -flz=-0. 

The potential can be put into the form of an integral convolution of the massive 
source with a Green retardation function Gret(rh, z, z', t), which is the solution of 
system (i.I) with an instantaneous point source m(r, t) = 6(t)6(rh)6(z - z') and with the 
causality condition G ret = (rh, z, z', t) Jt<0 = 0 [6]: 

(1.1) 

,p t) ( , 'h -  t'). 

After substituting this representation into the equation for the average (over one period of 
the oscillation) power dissipated upon the formation of internal waves at the surface dis- 
continuity of the density 

<W> = ~-E dt dzdV-lrhp (rh, z, t) m (rh, z, t) 
0 

one can carry out simple calculations to show that only the imaginary part of the Fourier 
form of the Green retardation function makes a contribution to <W> (after mauking the 
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Fourier transformation, we will use the same definitions as those for the initial quantities, 
except that r +-+ k, t +-+ ~): 

Pro0 
, p-1 k (-- kh~ z) X (i. 3) <W> = 2 ( ~ ' ~ - z  dzdz d khmo ( h, z') m o 

~re~,k ' (%). Xlm~ t h,z~,z'~ 

The existence of only the imaginary part of the Green function simplifies calculations since 
it is proportional to the 8-function, which is concentrated on the surface assigned by the 
dispersion equation for free waves. We have the following for two unbounded layers of uniform 
liquids 

) (o) ~o~z [ z" e--hhlZl--hhl.Z'18 kh ~ ,~ ImG ret (kh,. Z, Z'., 0.)) = -  ~ ~? + [?]1 

and the equation for the power loss takes the form 

; ( 1 ~ o P ( i + ~ )  dP-~kh8 kh .~-  - _ _  o dze-ka'~lmo (ka, z) 3 
< W >  = 8 ( 2 ~ )  p - 2  ' 

Here, the sign +(-) and p = P~(=Pz) correspond to the case when the massive source is below 
(above) the boundary interface; X ~ (p= - Pi)/(P2 + Pl); and p is the dimensionality of the 
space. 

For obtaining the results for real objects, it is necessary to model the objects by 
systems of massive sources. However, for a complete consideration of the approximations, 
we will use models from the theory of uniform unbounded liquids. One can hope for satis- 
factory results only for objects that are distant from the boundary interface. This 
approach is used, in particular, when considering waves on a free surface in [5], where the 
solutions of the bounded integral equations are applied. 

In a uniform, unbounded, ideal, incompressible liquid, the flow outside the cylinder 
(p = 2) or a sphere (p = 3), whose volumes change in a weakly harmonic manner, coincides 
with the flow from a massive source 

re(r,: t ) =  --2ga(ooro(2ro)P--S6(rh)8(z - -  zo) sin COot. (i.5) 

Using the same source for a two-layer liquid, we find from (1.4) that the energy dissipated 
in a single unit of time by a pulsating cylinder or sphere (with a radius of r0 + a cos ~0t) 
due to the formation of waves on the surface discontinuity of the density is given by the 
equation 

o.W'  / (1.6) ) 

which in the limit as X + i becomes (4.13), (6.8) from [5]. 

In an unbounded, uniform, ideal, incompressible liquid, there arises a flow outside the 
cylinders and spheres undergoing small oscillations in the direction of the vector a that 
coincides with the flow from a dipole massive source 

m (r, t) = 2 g r ~ o a V 5  (rh) 8 (z - -  zo) sin ~ot. ( 1 . 7  ) 

An estimate made with this source for the energy loss from the oscillating objects to the 
emission of internal waves on the boundary interface has the following form according to 
(1.4) 

I oll <W(~)>=cpT- -~g / 

2 t x ~ 4C a = a ~ + : ~ ( a ~ + a ~ ) .  C 2 = a 2 ----- a s + az, 

As y + i, we obtain the corresponding equations from [5]. 

Equations (1.6) and (1.8) allow one to compare the efficiencies of two types (pulsating 
and oscillating) of internal wave generators. The ratio of the powers 
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-G-/ 

is proportional to the square of the ratio of the object's dimension to the characteristic 
wavelength r0/(Tg~0-2), since for small oscillation frequencies (~ < 7g/r0), volumetric 
vibrators are more efficient (this is valid up to r0~2/yg % i because of the smallness of 
the factor Cp/a2). For sufficiently high frequencies (~2 >> yg/r0), one can expect the 
reverse situation. However, the characteristic wavelength (%yg/~) is much less than the 
size of the object (r0), and the use of point sources for modeling is doubtful because of 
the importance of interference effects at scales of %r0. 

2. A Uniformly Stratified~ Unbounded Liquid. Small perturbations in the pressure p due 
to a massive source m(r, t) = m0(r) sin ~0t in an initially motionless, incompressible, 
ideal, stratified liquid with a constant buoyancy frequency N in the Boussinesq approximation 
(we will use a system of units in which P0 = i) satisfy the equation [6] 

A .  = - O,o ( m  - ~4) ~o  (~) r ,Oot, Z - ~ v ~ + m v L  
(2.:) 

Solving this equation using the Green retardation function for the operator L, one can find 
an equation of the type (1.3) for the average power losses (1.2) 

( N  ~ r e 
< W > =  ~ --  o* ~ldPk lUlmGr~t ~ i  V I mo (k) (k, %). 

Since the imaginary part of the Fourier form of the Green function is proportional to the 
6-function 

I m  Gre~ (k ,  o~) = - -  ~ I ~ l  

in the equation for the power loss to emission of internal waves 

<W> = % (K~ - ~ )  f dPkl mo'(k) [2 ~ (~&, _ N2k~) 
( 2. 2 ) 

4(2~)~ -x 

one of the integrations can be done in the general case. 

For symmetric (spherically or cylindrically) sources, which include point-like monopole 
sources (1.5), one can make a simplification that is related to integration over all angles. 
The equation for the losses takes the form (w 0 i N) 

0 

and it follows that it is impossible to estimate the energy losses by modeling cylinders and 
spheres pulsating and oscillating in an uniform, stratified liquid with point sources (1.5), 
(1.7). Actually, a point-like monopole source (1.5) corresponds to ~2(k) = i, and the 
integral over the wave numbers in the equation for the power loss diverges (logarithmically 
for large and small wave numbers in the two-dimensional problem and linearly for large k in 
the three-dimensional problem). For a point-like dipole source (1.7), we have B 2 % k 2 and 
the divergence of the integral for large k is even greater (compare with the paradox of 
infinite energy losses in the problem of uniform motion of point sources [6, 7]). To avoid 
this difficulty, one must model the oscillating objects with nonlocalized sources. Hence, 
we will use distribution surfaces for the massive sources. 

In a uniform, ideal, incompressible liquid, the flow around the sphere (cylinder) for 
small harmonic changes in the volume coincides with the flow due to two-dimensional massive 
sources 

m(r, t) = mo(r) s inoot ,  mo(r ) =- -OoaS(r  --  ro). ( 2 . 3 )  

Using this distribution to model a sphere pulsating in a uniformly stratified liquid, we 
obtain the following simple result for the average power lost to the formation of internal 
waves 
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223 --1 3 < W > = n a r o N  co o V N~-c~ %<~N. 
(2.4) 

According to this equation, maximal losses occur for ~0 = N~3-72. 

In the two-dimensional problem of a pulsating cylinder modeled by a distributed massive 
source (2.3), the form-factor p=(k) is proportional to J~(kr0), which guarantees the con- 
vergence of the integral for large wave numbers, but the logarithmic divergence for small 
wave numbers remains. This divergence can be eliminated by assuming that the dimensions 
of the basin are restricted (see section 3). One obtains positive results by avoiding the 
Boussinesq approximation. However, this is related to changes in the scales ~g/N 2, which 
usually greatly exceed the dimensions of the basin. 

Borrowing the dipole distribution from the theory of a uniform liquid 

[3XP-~ ra (2 .5)  

we obtain the following for the average power loss due to the formation of internal waves 
for the model of a sphere (p = 3) and a cylinder (p = 2) of radius r 0 from (2.3) oscillating 
in a stratified liquid along the direction of vector a 

/3~O)oro\ p,-2 
< w %  = V - 

0) 0 2 As-.-~a~ a' A n ~ - . a .  4" - -  . 
.~ J 

(2.6) 

Comparing expressions (2.4) and (2.6) 

4 (2N ~ sinS0 "}" k Nz ] ' 

a = a{eos (p sin0, sin ~ sin 8, cos 0}, 

one can conclude that, with the exception of very small frequencies for a horizontally 
oscillating object and m 0 < N for vertically oscillating objects, pulsating and oscillating 
spheres are characterized by the same efficiency in relatlon to the creatlon of internal 
waves in an unbounded, uniformly stratified liquid. 

This conclusion is made based on modeling by the sources (2.3) and (2.5). One can only 
hope that it is satisfactory for an oscillation in the volume of the liquid that is small 
in comparison with the wave volume, i.e., for the condition a << r 0. 

3. A Stratified Liquid in a Horizontal Waveguide. We will consider a stratified 
liquid with N = N(z) between two rigid horizontal planes z = 0 and z = H that is weakly 
perturbed by a periodic massive source m(r, t) = m0(r)sin mot. We have the following for 
the perturbations of the vertical component of the velocity w [6] 

s Omo 
Z w  = - ~ o - ~ -  sin ~ot ,  w I~=o = w I~=.  = 0~ 

and the Fourier component of the pressure perturbation is 

As earlier, using the Fourier transformation in terms of the horizontal coordinates and time 
and applying an expansion over the vertical coordinate in terms of the eigenfunctions of the 

problem 

{ 0 s ~ - k ~ +  ~nt k~NS(z)} *n(kh'z)=O~ 
~. I = = o =  % I==-  = 0~, 
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one can represent the average power loss to radiation of internal waves (1.2) in the form of 
the following expression, which is squared in terms of the massive source 

I"t 

~--~3~ , ~ d~-lkh [ dzdz'm o (kh, < W > =  2(2~) " -  J J . z')mo(kh, z) X 
0 

X ~ O~ Im G ret (kh, z, z', Olo)" 
k~ Ozaz' ': 

where only the imaginary part of the Fourier form of the Green function enters. 
i s  t h e  sum o f  t h e  6 - f u n c t i o n s  o v e r  a l l  t h e  i n t e r n a l  wave modes 

IIn G ret (kh, z, g', co) ----- --~ ~ Xn *n (]~h, Z)Ipn (kh, Z') ~ -~n - -  l 

which  a l l o w s  one  t o  p u t  t h e  e q u a t i o n  f o r  t h e  power l o s s  in  t h e  fo rm 

<W> = 4.(2~)p_ . j - ~  ~ ] ,n  (kh) 6 k c~ - -  I ,; 

H 

.n(kh)==_j'dza.n(~z, z)mo(kh.z). 
O. 

The latter 

(3.1) 

We will limit our consideration to a waveguide of thickness H filled with a uniformly 
stratified liquid N = const, where 

i < T  . nnz X~k~ 
(ka, z) = - g  s i n - g - ,  

~ 2 n 2  ~i 
n = l,. 2,: , . .  

Then, for modeling pulsating and oscillating cylinders located far from the boundary 
(r 0 << z0, r 0 << H - z0), one can use the surface distributions of the sources (2.3) and 
(2.5) to find from (3.1) that 

n = l  

, ~___~nt x o 

Z - -  rcz~  _ _  r o  N . ~. =-#- ,  R _ -  

One s h o u l d  n o t e  t h a t  when making t h e  t r a n s i t i o n  in  <W(Z)> t o  t h e  l i m i t  o f  an unbounded 
medium (z 0 ~ ~, H/z 0 + ~), the sum over all modes logarithmically diverges, which is in full 
agreement with the results of section 2. The same same results are obtained by substituting 
the point source (1.5) into (3.1) without going to the limit H + =. 

For spheres that pulsate and oscillate in a layer of uniformly stratified liquid far 
from the boundaries and that are modeled by a surface distribution of massive sources (2.3), 
(2.5), one finds the following from (3.1) 
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3 3 2 --I Z__ <W(1)> = 4~roo~oa N ~/ N (o~ R-1SI,. 

<W(=)>=9rXo~XHN-2( Ns o)X) (a: + a y . ) ~ S '  a' 
- ' ~ + N 2] "l': 

S 1 = 31 (Z,, ~) ~ ~ c~ nZ sin 2 nR 
n2 ,~l 

S2 = S2(Z,: R)-~--~ Z 4 COS~nZ (COS nR sinnR~ 2 
'~=1 n-  - ~  ] ,1 

oo 

S a = S 3 (Z,:/~) .~ sin e nZ cos nR nil, ] " 

(3.3) 

It is evident from Eqs. (3.2) and (3.3) that, taking into account the conditions when 
r a << H for oscillation frequencies that are not too close to the buoyancy frequency 
/N 2 - ~ ~ N), the source with the pulsating volume is more effective for the excitation of 
lower internal wave modes. The contributions of the lower modes in the two-dimensional 
(3.2) and three-dimensional (3.3) cases are such that the ratios for the oscillating and 
pulsating objects are proportional to the square of the small ratio of the dimensions of 
the objects to the thickness of the waveguide (r0/H) 2. One should note that the result of 
(1.8) when there is only a single surface mode permits an analogous interpretation, since 
the length yg/~ characterizes the wavelength and the depth of the layer affected by the 
wave motion. 

The Fourier series with a period of ~ given in terms of Z enter into (3.2) and (3.3). 
However, only the region Z < ~ has a meaning in the above problems. Moreover, since these 
series are invariant relative to the substitution Z § z - Z, it is sufficient to analyze 
Z < ~/2 assuming that the center of the sphere or the axis of the cylinder is located in 
the upper half of the waveguide. The series SI(Z , R) is given in terms of the second argu- 
ment R of the periodic functions, and the Series $2, S 3 are the sums of the three terms 
proportional to the series that are periodic in terms of both arguments Z and R. 

The series are easy to sum in the three-dimensional problem with pulsating and os%illating 
sphere 

o < z ,  

$2= ~ 2R- -3Z  [~ 2Z3/R~,~ O<~ Z<~ R<~ g/2,j 
=-- I R, O <~ R <~ Z <.~ n/2,~ 

$3 = t2 [3Z --  2Z~/RZ~ 0 ~ Z ~ R ~ ~/2. 

2 2 The inequality R ! Z is equivalent to ~0 ! N/I - r0/z0, and, since r0 << z0 for the output 
condition, it is violated only if the oscillation frequency is very close to the buoyancy 
frequency N. On the other hand, although interesting interference oscillations of the power 
occur in the latter situation with an increase in the frequency ~0, the quantities for the 
power become very small according to (3.3) because theadditional factors are small 

Therefore, we have the following for the power loss to emission of internal waves due 
a pulsating sphere 

~ 2(VN~--~ ~0~ NV I ~ 
<W(O>. g ~ --7 ro/Z0- = ~ moroa N H / ~ 0 <.~ w o < 

It is evident from here that the simplest result (2.4) is obtained when making the transition 
to the limit of an unbounded liquid, and few waves are generated shortly before the limiting 
situation. For an oscillating sphere, the summation of the series under the same conditions 

2 2 when ~0 ! N/I - r0/z0 yields Eq. (2.6). 
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Hence, the total efficiencies of pulsating and oscillating generators of internal waves 
in a horizons waveguide, as is true in the limit of an unbounded liquid, are equivalent. 
However, there is a great difference in the distributions of energy over the modes. Maximal 
power loss occurs at the highest modes for oscillating sources. 

One should note that surface waves will be generated if the upper boundary of the wave- 
guide is free. In relation to internal waves, there is little difference from the case 
considered above for the "solid cap", where r0, z0 << H. 

Modeling of oscillating objects with simple distributions of massive sources is no 
longer satisfactory if the amplitude of the oscillations is increased. However, in the 
opposite extreme case with very large amplitudes (a >> r0), a different type of simple 
modeling is possible, and the results remain fairly straightforward [8]. 
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